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Epidemiologic methods have played an
important role in the identification of envi-
ronmental and occupational causes of lung
diseases and respiratory morbidity/mortality
in populations (1-4). Epidemiologic studies
are concerned primarily with the distribution
of causal determinants of disease in popula-
tions, but modern epidemiologic investiga-
tions increasingly have focused on more
refined characterizations of subgroups of
individuals out of which the cases actually
arise (at-risk subsets) among exposed indi-
viduals within populations and on more
refined characterizations of exposures. The
expansion of the repertoire of objective
markers of exposure, dose, and biologic sus-
ceptibility and response through advances in
toxicology, molecular biology, and genetics
has heightened this trend and is particularly
relevant to occupational and environmental
epidemiology that is related to lung disease.
Epidemiologists also have made wider use of
study designs using analytical strategies that
have been largely applied in other disciplines
(e.g., time-series analyses).

The goal of this review is to summarize the
characteristics of a) selected epidemiologic
study designs that have been developed/refined
over recent years or b) more established meth-
ods, the application ofwhich has increased as a
consequence of a combination of convenience
and sound theoretical underpinnings. The
choice of the designs to discuss is motivated by
the potential or proven usefulness of the
designs in environmental and occupational
epidemiology. A comprehensive review of
methods for cohort studies recently has been
published (5); therefore, this review focuses on
cohort designs that either were not discussed
or were discussed only briefly in that review.
More emphasis is placed on case-control

designs, as some of the newer designs are
particularly relevant for occupational and
environmental epidemiologic studies, and the
potential efficiency of these designs can be of
considerable advantage in terms of feasibility
and costs. Moreover, improved understand-
ing of the relation between case-control
studies and failure time analysis in cohort
studies (6) has provided a firmer basis for the
validity of case-control design for causal
inferences about disease occurrence in
relation to particular exposures.

Cohort Study Designs
It is natural to begin with a discussion of
cohort studies because in the realm of obser-
vational studies these designs most closely
approximate the situation of an experiment-
i.e., subjects free of disease are identified and
occurrence of disease is observed among those
exposed and not exposed to the substance
under study. In contrast to a true experiment,
the investigator has no control over who is
exposed or other factors that might influence
the outcome in the context of the particular
exposure (i.e., confounders and effect modi-
fiers). In a recent review of outcomes that can
be studied with cohort designs, I divided
these designs into two broad categories, life
table-type and longitudinal (7). Life table
cohort studies are characterized by their treat-
ment of time and exposure in a manner tied
closely to traditional life table methods of
analysis. In general, exposure and person-time
are summarized. Incidence (density) and
cumulative incidence of a discrete disease out-
come and their respective ratios are the prin-
cipal outcomes of the life table-type cohort
study. Inferences from theses types of cohort
studies are restricted to population average
effects. Longitudinal cohort studies, on the

other hand, take explicit advantage of the
potential for repeated measures of exposures
and subject characteristics in cohort designs
and make possible not only inferences on
population average effects but also on indi-
vidual heterogeneity, changes in processes
over time, and repeated transitions back and
forth between states of health and disease. In
the review, I illustrated the usefulness of the
longitudinal cohort study for five categories
of inquiry (7). These are summarized in
Table 1. Although the illustrative examples
were drawn from a variety of disciplines, their
applicability to studies of environmental and
occupation respiratory disease is obvious.
Two broad categories of cohort designs not
considered in that review are quite relevant to
epidemiologic studies of occupational and
environmental lung diseases and will be the
subject of the cohort studies section: time-
series and panel studies, and multilevel cohort
designs incorporating individual and
between-group (ecologic) differences.

Contemporary epidemiologic studies of
air pollution-related health effects rely on
group-level (ecologic) assignments of expo-
sure applied both to truly ecologic studies and
to studies that use ecologic estimates of expo-
sure and individual-level data. Therefore, it is
useful to clarify what is and is not meant by
an ecologic study [see Kunzli and Tager (8)
and Morganstern (9) for more complete
reviews] before I proceed to a discussion of
specific study designs. In an ecologic study,
all data are at the group level (e.g., daily inci-
dence of death and some metric of air pollu-
tion for a given region on a given day); no
individual level data are collected. Inferences
about individuals from such studies are sub-
ject to what is called the ecologic fallacy (10).
The ecologic fallacy is the bias that can occur
when group data are used to make inferences
about individuals and results from the mixing
of between-group and within-group variabil-
ity (11) and from group-level confounding
and effect modification that do not have an
immediate representation at the individual
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Table 1. Types of analyses that can be conducted in longitudinal but not life table cohort studies.
Type of analysis
Estimation of effects at the individual level

Estimation of individual heterogeneity
Separation of cross-section versus
longitudinal inference

Estimation of the effects of risk markers over time on
disease outcome

Estimation of the rate of change or change in level for
outcomes that relate to disease natural history

Natural history of states of health with multiple
occurrences or that oscillate between states of
disability/disease

Separation of cohort or period effects from the effects
of age or calendar time

&See Tager (7) for citations of specific examples.

level (12)]. Studies that obtain group-level
data on exposure but individual-level data on
important confounders and effect-modifiers
are more properly considered individual-level
studies, studies in which issues of exposure
measurement error take on considerable
importance (8).

Epidemiologic Time-Series Studies
Time-series studies have been one of the most
frequently used longitudinal study designs
over the past decade for the investigation of
respiratory and other health effects related to
ambient air pollutants because they are par-
ticularly useful for examining the effects of
short-term fluctuations in air pollutant expo-
sures on acute morbidity and mortality (13).
In a general sense, a time series is a study
based on a collection of observations made
sequentially over time and applies to
sequences of observations with intervals
between observations that range from very
short to very long, provided that a sufficient
number of sequential observations are avail-
able in the series (14). Environmental epi-
demiologic time-series studies (ETSS) make
repeated observations of exposures, outcomes,
and relevant covariates over very short time
intervals, usually days. This is in contrast to
the more traditional repeated measures longi-
tudinal epidemiologic studies (RMLES) (7)
in which observations generally are separated
by relatively long periods (e.g., years,
decades). Although these latter studies are a
time series in the strict sense of the term, the
numbers of repeated observations in such
studies are usually quite small. Thus, epi-
demiologic analyses of RMLES have tended
to rely more on approaches related to failure
time models (15,16). ETSS frequently use
such models [e.g., Poisson regression (17)]
but also use standard time-series analysis (18).
One characteristic that distinguishes the
ETSS design from the more traditional
RMLES design is the need, in ETSS, to deal
with potentially cyclical characteristics of
time-dependent covariates as a confounding
factor, i.e., the cyclical temporal character of a

Examplea
Effects of respiratory illness on growth of lung
function in children

Effect of hypertension on the occurrence of congestive
heart failure

Relationship between airways hyperresponsiveness
and decline in lung function

Probability of transition between being disabled and
not being disabled in relation to age in an elderly
population

Effects of age and period effects on the decline in
lung function in adults

particular factor induces the confounding (17).
The fundamental comparison in ETSS is
between fluctuations in outcomes (counts of
events, deviations of measures of lung function
from group or individual average levels) and
fluctuation exposures (e.g., daily concentra-
tions of air pollutants) after adjustment for
confounding effects of time and weather. (An
example of such confounding is the autumnal
seasonal patterns of viral respiratory illness that
coincide with seasonal increases in particulate
air pollution, as might be observed in southern
California.) The effect of the successful adjust-
ment for confounding results in fluctuations of
the outcome and exposure series around their
respective mean values, which are stable, with
stable variance [i.e., no time trend or periodic
fluctuations in mean or variance, a so-called
stationary time series (14)]. Figure 1 is an
example from Samet and colleagues (19) to
illustrate the successful removal of potentially
confounding cyclical temporal trends in an
outcome mortality series for a study of the
effects of short-term fluctuations of ambient
air pollutants on mortality.

In terms of the types of data collected, two
general types of ETSS can be identified: eco-
logic and individual-level (panel) studies. In
the first type, data on exposure outcomes and

covariates are obtained only at the group level.
Examples are the many studies of daily cardio-
pulmonary and all-cause mortality or daily
hospitalizations for cardiopulmonary morbid-
ity and concentrations of ambient air pollution
[summarized in Dockery and Pope (13)]. The
outcomes are daily counts of events (usually for
cities), the exposures are daily measures of
ambient pollutant concentrations from central
monitoring sites, and the covariates are time-
related factors (e.g., day of week, season),
meteorologic factors (e.g, temperature, relative
humidity), and other potentially confounding
factors that have obvious group-level interpre-
tations (e.g., influenza epidemics). Sources of
health-related data are secondary (e.g., death
certificates, hospital admissions data) and are
not based on any direct observations of indi-
vidual subjects. These studies are true ecologic
studies, the inferences from which are most
properly limited to the population level. ETSS
have particular appeal in the setting of studies
of population-level health effects associated
with daily fluctuation of ambient air pollu-
tants because it can be assumed safely that, on
a day-to-day basis, the populations under
study do not change in terms of their distribu-
tions of important, unmeasured confounding
and modifying factors (e.g., prevalence of cig-
arette smoking, patterns of health care that
could affect patterns of hospital admissions,
socioeconomic factors).

ETSS that make direct, daily measure-
ments on individual subjects often are
referred to as panel studies. Direct measures
of outcome include such factors of lung func-
tion (18) and respiratory symptoms (20).
Direct measures of potential confounders and
effect modifiers include use of medications
(20,21), cigarette smoking, and other
non-air-polluting environmental exposures
[e.g., fungal spores (22)]. Exposure to the rel-
evant pollutants, on the other hand, most fre-
quently are derived from central monitors
and applied equally to all subjects, although

Daily mortality vs. time (total)
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Figure 1. Top series is crude total mortality series for Philadelphia, PA, 1973-1980. Bottom series is the same
mortality series after adjustment for long-term time trends in the data. Data from Samet et al. (19). Reproduced with
permission of the Health Effects Institute.
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panel studies allow for personal exposure
measurements (23). Despite the availability of
individual-level measurements, data from
these studies often are grouped and the analy-
ses are conducted as described for ecologic
ETSS. In the case of outcomes such as lung
function, panel studies permit the use of
other modeling approaches that allow for
inferences at the individual as well as the
group level (16). Despite the usual focus on
group-level inference and the use of group-
level exposure data, panel studies are more
properly considered individual-level studies in
terms of issues of confounding and effect
modification (8). The principal source of
controversy in regard to such studies relates to
the impact of exposure measurement error on
the estimate of air pollution-related health
effects (24,25). Panel studies have the same
desirable property as ecologic ETSS of being
able to assume that, on a day-to-day basis,
individual-level unmeasured confounders and
modifiers do not change.

Time patterns in the outcome, exposure,
and covariate series can confound observed
relationships between exposure and outcome
(17) in ETSS and are cause for greater con-
cern in these types of studies than in RMLES.
In traditional RMLES, problems of time
dependence generally are relatively simple-
e.g., was a characteristic present or absent or at
some particular level just prior to or in an
interval prior to the observation of subjects? In
ETSS, time patterns are more complex and
can be fluctuations (seasonal patterns of
deaths and air pollutant concentrations), day-
of-week patterns of outcomes (decreased hos-
pital admissions on weekends), or exposures
(observations of higher weekend relative to
weekday levels of ozone in the Los Angeles
Basin), or long-term trends for ETSS that
cover many years of daily data (long-term
declines in air pollution concentrations and
deaths from cardiovascular disease). Steps
more specifically applied to ETSS are required
in analysis to assure control of these time-
dependent confounders (17).

Finally, it must be stated that despite their
usefulness and importance for the study of
short-term health effects related to air pollu-
tion, ETSS generally are not useful for infer-
ences on the more long-term effects (26). One
possible exception to this may emerge as
methods are developed to address the problem
of harvesting (27). This term arises in the con-
text of observations of excess daily mortality in
relation to daily increases in air pollution.
Harvesting or mortality displacement refers to
the possibility that only frail people, who are
at high risk for imminent death, are affected
by daily fluctuations in air pollution.
Harvesting would be manifested by an
increase in deaths immediately (or some short
lag period of several days) after days with

increased air pollution and by decreases in
deaths in the ensuing days due to the tempo-
rary depletion of the pool of frail, susceptible
individuals. Concern was raised that the peo-
ple who were actually dying were going to die
very soon in any event and that the effect of
increases in air pollution was only to hasten
such deaths by a few days or weeks. If such a
phenomenon is occurring, it would have far
different implications from a public health
viewpoint than an inference that the excess
deaths were not imminent but were prema-
ture to some degree. Recent statistical
methodological results suggests that inferences
on this issue can be derived from ETSS (27).

Multilevel Designs
Cross-sectional comparisons between areas
with different patterns of environmental pol-
lution have been used to try to study the
health effects of long-term (cumulative)
effects of exposures increased levels of air pol-
lution (28,29). Unfortunately, such studies
suffer from such problems as temporality
(does the measured exposure actually reflect
the cumulative exposure that is inferred to
have preceded disease onset and caused the
disease), unmeasured or imperfectly specified
confounders between populations, and, in the
case of chronic disease, prevalence bias (i.e.,
those with the least lethal forms of the disease
are most likely to be alive and be induded in
a cross-sectional study). To some extent true
ecologic studies may have some advantages in
this regard over cross-sectional studies based
on individual-level data, as it is possible to
construct long-term exposure records that are
valid for a population (in contrast to specific
individuals in the population) and to manage
issues of confounding at the group level (e.g.,
group measures of socioeconomic status,
race/ethnicity). Although such studies can
provide valid inference at the population level
(30), they are severely limited, at best, when
inferences are required at the individual level.

Recently, an example of a multilevel
design [the term multilevel, as used here, was
proposed by Navidi et al. (25)] has been
applied to the study of the long-term health
effects of exposure to ambient air pollutants
to take advantage of the cross-sectional con-
trasts that can be obtained in ecologic studies
and the availability of individual-level data
needed for inferences at the individual level
(25,31,32). Only cross-sectional results have
been published, but because the design of the
study clearly is that of a classical RMLES (10-
year cohort study), the design is presented in
the section on cohort studies.

The basic design is fairly simple.
Communities (n = 12) were selected to maxi-
mize contrasts between the various communi-
ties for various air pollutants and patterns of
pollutants (25,31). Within each community,

a representative sample of children were
selected for study. Health outcomes and other
relevant individual-level data are collected on
an annual basis. Annual air pollution data are
obtained for each study community. Data on
air pollution are available at the community
level from central monitors and at the indi-
vidual level based on microenvironmental
modeling (25,33) and personal sampling.

The success of the design rests on identifi-
cation of an analytical strategy that takes into
account the within-community (i.e., the
between-subject) and the between-community
variability in outcomes and important con-
founders. A first-stage analysis model is fit
[e.g., logistic regression (31), multiple linear
regression (32] for each community based on
individual-level data for that community.
This level of analysis provides a community-
specific occurrence of disease or level of
function that is adjusted for individual-
level exposure as estimated from micro-
environmental models (25). The second stage
involves an ecologic model in which the out-
comes are the community-adjusted estimates
from the first stage analysis, and the exposures
are the community-level exposures (e.g.,
community-specific averages of the individ-
ual-level exposure estimates) and, presum-
ably, any other community-level covariates
that can be estimated from averaging across
individuals (e.g., prevalence of some disease
or characteristic) (contextual variable) or are
integral factors (e.g., weather conditions) that
have no individual-level representation (34).
Application of this design to the longitudinal
data collected provides inferences on effects of
long-term exposure on various outcomes that
are not possible with single stage cross-
sectional data.

Case-Control Study Designs
It may not be an overstatement to suggest that
among nonepidemiologists, data derived from
case-control studies often are treated with
much skepticism, if not outright distrust. This
skepticism undoubtedly is because in its classi-
cal formulation (35), the design seems coun-
terintuitive. Cases and noncases (controls) are
first identified and then their exposures are
determined; this is quite the reverse of the
more natural experimental situation in which
an exposure is applied (experimental study) or
experienced (observational cohort or longitudi-
nal epidemiologic study) and the outcomes are
observed subsequently. Since the 1970s, epi-
demiologists (36,37) and biostatisticians (6)
have viewed the case-control study as a design
that at its core is based on sampling from a
cohort (the base, i.e., the real or theoretical
cohort out of which the cases arise). In fact,
most of the problems that relate to inferences
derived from many case-control studies have
more to do with problems of implementation
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(e.g., selection bias of cases and/or controls,
retrospective assessment of exposure, etc.) than
with the theoretical validity of the various sam-
pling strategies for different case-control
designs. The attractiveness of the nested
case-control design derives equally from the
fact that the cohort from which the cases arise
is known with certainty, selection biases can be
minimized, and exposure assessment can be
based on data available before the time the case
arose. Therefore, to understand the designs to
be discussed, a brief discussion of the case-base
paradigm and risk set sampling is useful.

Miettinen (37-39) introduced the concept
of the case base. He reasoned that case-control
studies represented a special sampling from the
person-time ofsome actual (population or pri-
mary base) or hypothetical population (sec-
ondary base). The term base refers specifically
to the person-time experience out ofwhich the
cases arise. Ideally, under this so-called
case-base paradigm, one obtains a complete
census of the cases and a sample of the overall
person-time of the cohort (controls). Validity
in a case-control study, at least in terms of the
selection of controls, therefore, depends on the
proper identification of the base (population)
out ofwhich the cases arise and selection of an
unbiased sample (with respect to the study
base) of its person-time (controls) (40-44.

Parallel to the development of the
case-base paradigm was the understanding
gained by biostatisticians of the relationship
between case-control sampling and failure
times in a survival analysis (6) and the formu-
lation of the incidence density case-control
study (36). In this context, at the time of
occurrence of a new (incident) case of disease,
controls are sampled at random from the
appropriate large population (base), which
leads to the same conditional analysis associ-
ated with matched case-control studies (6).
An extension of this approach led to control
sampling strategies from defined cohorts (in
contrast to an open, dynamic population). In
one strategy, risk sets are sampled at the time
of occurrence of the cases; this strategy forms
the basis for the nested case-control study. In
the case-cohort design, a subcohort is
selected at random from the entire cohort at
the start of the follow-up of the cohort and
cases are identified from the entire cohort as
the cohort moves through time (43).

Risk Set Sampling and the
Nested Case-Control Design
The concept of a risk set is illustrated in
Figure 2. Risk set sampling designs are related
to methods used in the familiar Cox propor-
tional hazards model for full cohort data (44).
In this latter method, at each time a new case
appears a risk set is formed comprised of the
case and all other cohort members who are
still at risk at the time the case appeared (i.e.,

the controls). A sample from the risk set
would include the case and a sample (1 or
more) of the eligible controls in the risk set at
the time the case appears. Each time a case
appears, a new risk set is formed and sampled.
When risk sets are sampled in this manner,
cases and controls are matched on time and
also can be matched on important other con-
founders (e.g., age, sex, etc.). The final data
set produced by this sampling strategy has the
structure of a matched case-control study and
the analysis follows a similar form (44).
Langholtz and Goldstein (44) present a sim-
plified explanation of the connection between
this sampling strategy and the full cohort sit-
uation. A more in-depth summary is offered
by Borgan and Langholtz (45). Estimation of
the cumulative baseline incidence (hazard) of
disease in the full cohort also is possible with
these designs. Finally, in the usual nested
case-control design cases and controls receive
the same sampling weights but other risk set
sampling designs can be implemented by
specification of the appropriate sampling
weights (44) (see below under "Staged
Sample Case-Control Studies").

In a nested case-control design, cases are
identified from a cohort that currently is
under observation or from a cohort that is
constructed retrospectively. At the time of
occurrence of each case (e.g., age, time from
start of employment, time from inception of
cohort), one or more controls are selected
from cohort members still at risk for the out-
come at the time the case is identified. These
controls also can be matched to the case on
known important confounders (e.g., sex,
smoking history, etc.). Such designs are par-
ticularly efficient when the outcome of inter-
est is rare (e.g., leukemia in an occupation
cohort) or the cost of the collection and pro-
cessing of data is too expensive for implemen-
tation in an entire cohort (e.g., analysis of
blood specimens for a biomarker, coding or
summary of complex job matrices to assess
occupational exposures, etc.). The odds ratios
estimated from such studies are estimates of
the average incidence density ratio for the
cohort with no rare disease assumptions
required (46). Moreover, the matching on time
removes any assumptions about the prevalence
of exposure during the life of the cohort (46).

A Norwegian study of the effect of expo-
sure to NO2 on the occurrence of bronchial
obstruction in children less than 2 years of
age offers a relevant example of a nested
case-control study that illustrates the advan-
tages of the design (47). A birth cohort of
3,754 subjects was assembled over a 1-year
period and subjects were evaluated at
6-month intervals over the first 24 months of
life. Children who met the criteria for
bronchial obstruction and could be contacted
(overall prevalence = 6.8%; 84% of all cases

could be contacted) were matched with
children free of bronchial obstruction who
were born next in time relative to each case.
Indoor and outdoor NO2 measurements with
Palmes tubes in the home were made for a 2-
week period only for the nested case-control
subjects. Conditional logistic regression was
conducted controlling for sex of child, birth
weight, parental asthma, length of breast
feeding, etc. Cases were relatively uncommon
in the cohort (6.8%), and logistically expen-
sive exposure assessments needed to carried
out for only a small fraction of the cohort.

Staged Sample Case-Control Studies
The efficiency (precision and/or cost) of
case-control studies at times can be improved
by using more complex sampling designs
than the simple nested case-control study
(6,48). These designs are useful in situations
in which a well-defined cohort either does
not exist or has not yet been studied.
Following are two types of examples.

Two-stage case-control studies. Two-stage
case-control studies are one type of the more
general two-stage designs (49). The general
design is useful for those circumstances in
which exposure and outcome data may be
available for a large group of individuals,
although information on important modifiers
and confounders is not available and it is not
feasible (cost, logistics) to obtain the missing
data on all subjects. This design is illustrated
in Table 2 (6). In this example, a hypothetical
case-control study of 1,000 subjects was
conducted (Stage I) to investigate the relation-
ship between lung disease and employment in
a particular factory. Employment in a factory
is rare in this particular community. Cases
and controls were obtained at random from
the community. Employment status was
known from existing data, but information on
smoking was not available. Funds were not

* Failure
At riskI

-4-- -

-I- If-

Time

Figure 2. Hypothetical cohort. Each line represents a
subject's time on study. represents an at-risk subject at
the time a case appears; * represents the occurrence of
a case. Data from langholtz and Goldstein (44).
Reproduced with permission of Statistical Science.
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sufficient to interview all subjects. As exposure
(factory) was uncommon, all exposed cases
and controls were interviewed, but only a
sample of unexposed cases and controls were
interviewed (Stage II). An analysis restricted to
only the Stage II sample would be less precise
because of the smaller number of subjects and
also would be potentially biased.

The essential feature of the analysis of
such a design is to use the information on the
disease-exposure relationship contained in
the full study group (the 1,000 subjects in the
above example) and the confounder informa-
tion available for the Stage II sample. The
various analytical strategies have two com-
mon characteristics: a confounder-adjusted
estimate of the exposure-outcome association
that is based on data from the second-stage
sample; and adjustment of the exposure-
outcome estimate and its variance for the
method of sampling used to obtain the
second-stage sample. Methods also have been
developed to estimate the optimal second-
stage sampling strategy in situations for which
the goal is to optimize precision, or cost, or
the situation in which the sizes of the first-
and second-stage samples are fixed (50). This
design strategy also can be applied when

subsample validations are conducted in the
context of a case-control study (6). In this
application, the assumption is made that the
imperfectly measured variable (e.g., job
matrix) is a "perfect" surrogate for the "gold
standard" measurement-i.e., conditional on
the true measurement, the surrogate has no
association with the disease outcome.

Counter-matched studies. The simple
nested case-control study uses only informa-
tion for the cases and controls actually used
the case-control study; none of the other
cohort information is used. One consequence
of this strategy is a lowering of the precision of
the exposure effect estimates by using this sub-
sample rather than the full cohort. Some of
this loss in efficiency also is because matching
on potential confounders in nested case-con-
trol studies (in fact, in all matched case-con-
trol studies) also leads to some level of
matching on exposure. Such exposure-concor-
dant pairs (risk sets) do not contribute to the
estimation of the exposure effect. The coun-
termatching design, which derives from risk-
set sampling (44), seeks to remedy these
shortcomings by stratified sampling of expo-
sures (not confounders, as usual with match-
ing) and by adjusting a subject's relative risk

Table 2. Data from hypothetical two-stage case-control study.a
Stage

Exposure Cases Controls
Factory workers 40 20
Employed elsewhere 460 480
Total 500 500

Stage 11
Cases Controls

Exposure Factory Elsewhere Factory Elsewhere
Smokers 30 37 10 42
Nonsmokers 10 133 10 128
Total 40 170 20 170
"Data from Breslow 165).

Table 3. Situations in which countermatching designs may be helpful.a
Situation Goal

for the sampling strategy from the strata of
exposure (in the simplest situation, exposed
and unexposed) in each risk set (44,51)-i.e.,
the subjects are weighted relative the probabil-
ity of being sampled from a given exposure
stratum in the risk set at the time the case
appears. The term countermatching comes
from the design with one control for each case
and only two exposure strata (e.g., exposed
and unexposed). In this case, the control is
selected from the exposure stratum opposite
from (counter to) that of the case. When more
than one control per case is to be selected,
subjects are selected such that the number of
subjects per exposure stratum is equal (say,
mi). Therefore, each stratum will contain mi
controls except the case stratum that will con-
tain ml - 1 control plus the case (45). The
analysis form is a weighted conditional logistic
regression (45). Langholz and Goldstein (44)
and Langholz and Clayton (51) provide a
number of situations in which such a design
might be useful and provide examples. These
are summarized in Table 3.

Single-Case (Case-Only) Designs
This class of designs is based on the general
concept that cases can serve as their own con-
trols. All of these designs share a common
need to use some prior theory or set of
assumptions about exposure distribution to
replace information usually supplied by an
independent control group (52). (In the
unusual case-control study, the control expo-
sure distribution is used to estimate the
underlying exposure distribution.) Thus, the
ultimate validity of such designs depends on
the validity of the assumptions about the
exposure distribution (52,53). These designs
have application in genetic analysis (54), but
focus here is on designs and assumptions rele-
vant to etiologic epidemiologic studies of
environment and occupational exposures.

Comments
Crude exposure surrogate available on all subjects;
more detailed exposure available on limited sample

Exposure data available on all subjects and
confounders to be collected on a subset

Exposure data available on everyone, and another
covariate is collected on the sample

Exposure 1 data available on all subjects and
exposure 2 data available only on a sample of
subjects

Assess the effect of the detailed
exposure variable

Assess confounder-adjusted
exposure effect

Investigate interaction between
exposure and covariate

Investigate exposure 1 and main
effect of exposure 2

More efficient (1 variance) than nested case-control
The more accurate the surrogate the closer the efficiency to the full
cohort relative to a simple nested design

Exposure strata may be optimal when based on case distribution
of true exposure and equal-size strata

Confounder effect and variance seemed to be captured better with
1:3 countermatched design than with 1:1

Confounder effect may not be estimated any more accurately or
precisely than simple nested design, but the main exposure effect
more is accurate and the variance smaller

For most situations in which exposure is associated with disease,
countermatching may be more efficient for the estimation of the
interaction parameter (-1 variance)

Low efficiency
Proposes strategy for use of additional randomly sampled controls,
which improves the efficiency of estimation of the exposure 2
while retaining the countermatching efficiency for the primary
exposure (exposure 1)

¶ata modified from Langholz and Goldstein 144)
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Case-crossover design. This design was
introduced by Maclure in 1991 (53) "to assess
the change in risk of a rare acute event during a
brief 'hazard period' [sic] following transient
exposure to a determinant of event onset" (55).
Reasoning from the case-base paradigm (37),
Maclure viewed the case-crossover design as
the counterpart to a cohort study in which sub-
jects crossed over between periods of exposure
and nonexposure. He viewed the design as
analogous to crossover designs used in treat-
ment studies except, as is true for all observa-
tional studies, crossover times between risk and
nonrisk periods are not random (53). The obvi-
ous advantage of such a strategy is the complete
control for time-invariant potential con-
founders or the near-complete control for con-
founders that change slowly over time (52,53).

In keeping with the case-base paradigm
and risk set sampling, a complete census of
the risk period immediately before the occur-
rence of the event under study [e.g., heavy

Model1

25 24

Hr prior to Ml onset

* Ml

1 hr 0

Models 2, 3, 4

26 12

Hr prior to MI onset

* Ml

1 hr 0

Model 5

Usual frequency of exposure during past year
* * * * -* *mI

12 8 4

Months prior to Ml onset

Figure 3. Examples of three different approaches for the
choice of controls in a unidirectional case-crossover
design. (A) Single control time intervals. (B) Multiple
control time intervals. (C) Usual frequency over some
predefined interval prior to the case interval. Data from
Mittleman et al. (55). Reproduced with permission of
Oxford Press.

physical exertion in the hour before a
myocardial infarction (MI) in Maclure's orig-
inal paper (53) or the 48-hr period prior to
death in studies of mortality associated with
air pollution (56)] and an appropriate sample
of comparable time periods prior to the event
are obtained for each subject. The sampling
strategy is illustrated in Figure 3. The choice
of control time periods is governed by the
availability and representativeness of the
exposure data for the control period (55) and
a stable (over time) exposure distribution. In
the original design proposed by Maclure (53),
exposures can be either point exposures or
exposures of short duration. Each such expo-
sure has an induction period (shortest time
between exposure and onset of outcome) and
a duration of effect (duration of effect after
the end of induction period). Some direct
knowledge or assumptions about both the
induction and effective periods are critical to
prevent carryover effects from control periods
into the time of the risk period immediately
preceding the event. Each subject then is
treated as a matched pair composed of an
exposure period immediately before the event
and an exposure period not associated with
an event. Thus, the data analysis follows that
for traditional matched case-control studies,
i.e., Mantel-Haenszel estimates or maximum
likelihood methods that include conditional
logistic regression (52,57). As the control data
(exposure times) are measured in person-time
units, this design estimates the average inci-
dence rate (density) ratio (53). Willich and
colleagues (58) compared the results of a con-
ventional case-control study and those of a
case-crossover study to address the question
of whether the occurrence of an MI is related
to recent physical activity (58). Only 270 of
882 cases experiencing MI could provide ade-
quate information on physical activity for the
case-crossover design. Nonetheless, the odds
ratios for the occurrence of physical activity
in the 1-hr prior to MI were identical for the
two designs (2.1; 95% confidence interval,
1.1-3.6).
A number of potential sources of bias are

possible for the case-crossover design (Table 4).

One that is unique to the original design ("uni-
directional") is the assumption that the expo-
sure distribution and subject-specific
confounders are stable over time. A corollary is
that subject-specific confounder-exposure rela-
tionships also do not change over time.
Carryover effects from the control time into the
time period immediately preceding the event
also lead to biased estimates of exposure effect.
Information bias can result from the need to
obtain information about the control exposure
in a manner that is different from that used to
obtain the exposure information just prior to
the case [e.g., the decision to use usual exposure
to define the control time compared to using
exposure in some finite time period prior to the
event (55)].

In addition to the usual sources of selec-
tion biases in case-control studies (e.g., sub-
ject willingness to participate related to
exposure or outcome), the failure of the
assumption of no time trends in exposure
leads to a form of selection bias. If there is a
temporal trend in exposure, control time sys-
tematically may have greater or lesser expo-
sure than case time, with the direction
dependent on the nature of the temporal
trend (25,59). Navidi and colleagues (25)
developed the bidirectional case-crossover
design to address this problem in studies of
environmental exposures. Assessing environ-
mental exposures is sometimes easier than
assessing behavioral exposures (e.g., exercise
in Maclure's example) for two reasons: rea-
sonably accurate information about past lev-
els of exposure often is available, and levels of
exposure are not affected by the outcome in
the subject. Navidi et al. called the design
bidirectional because the control exposures
could be sampled from times before or after
the event of interest. In a simulation study
based on temporal patterns of ambient partic-
ulate mass < 10 pM in diameter (PM o), the
authors demonstrated that unbiased estimates
of effect could be obtained when biased esti-
mates were obtained for a unidirectional
case-crossover design (Table 5) (25).
Moreover, the variances were small for the
bidirectional design. One criticism raised

Table 4. Case-only studies.
Type of study Features of sampling of control exposure Rationale Potential threats to validity (sources of bias)

Case-crossover
Unidirectional Selected from relevant time period(s) Controls for subject confounders that remain General and confounder-specific time trends in

prior to case exposure period fixed over time (e.g., sex, ethnicity) exposure
Applies to both uni- and bidirectional sampling

Bidirectional Selected from relevant time periods Potential to control for temporal trends in Time trends in confounder-exposure risks
before and after case exposure period exposure Carryover effects of exposure

Case selection bias
Information bias

Case-specular Defined by wire code of hypothetical residences Avoids bias in control selection in relation Failure of the assumption of symmetrical
(developed specifically located in a virtual situation in which either the to important neighborhood characteristics probably of a given wire code
to study effects of position of the power line is switched around Bias in wire coding
magnetic fields) the center of the street of the case residence
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about this method (25) was its failure to
account for carryover effects in the subject
(e.g., a person who experienced an MI a
number of days after an air pollution expo-
sure is not the same person he/she was in
before exposure in terms of underlying sus-
ceptibility to MI, as might be evidenced by
decreased heart rate variability). Bateson and
Schwartz (60) noted that the simulations car-
ried out by Navidi et al. did not address the
issue of confounding by the omission of vari-
ables that are the source of seasonal variations
in morbidity and mortality associated with
short-term fluctuations in ambient air pollu-
tants. The simulation undertaken by these
investigators demonstrated that not all bidi-
rectional control sampling strategies led to
unbiased estimates over the eight different
patterns of seasonal and time-trend scenarios
used by the authors and that estimates could
be unbiased for some types of season/time-
trend patterns and biased for others.
Moreover, they observed that there were sub-
stantial losses in efficiency (increased vari-
ance) relative to standard Poisson regression
approaches even for those bidirectional
crossover designs that gave unbiased results.
The work of Bateson and Schwartz (60) indi-
cates that the validity of results from a bidi-
rectional design clearly cannot be assumed, in
the absence of data from other design strate-
gies, when complex temporal exposure pat-
terns exist (such as those encountered in
many studies of ambient air pollution).
Moreover, their simulation indicates that
appropriate control sampling strategies could
differ between study areas with differing
patterns of temporal confounding.

Neas et al. (56) used the case-crossover
design to reevaluate the relationship between
daily mortality and daily fluctuations in total
suspended particulates (TSP) over the years
1973-1980. They evaluated uni- and bidirec-
tional control strategies (7, 14, 21 days). The
period of exposure risk was the 48 hr prior to
death (based on previously published data).
Table 6 demonstrates two important points:
choice of the control interval affects the risk
estimate (multiple day control periods pro-
duced estimates closest to that obtained in
Poisson regression [relative risk = 1.069] based
on full time series), and the bidirectional

design was able to control for the effects of
seasonal fluctuations in TSP in contrast to the
unidirectional design.

Case-specular designs. This design was
developed by Zaffanella and colleagues (61)
specifically to address the problem of control
selection (e.g., selection bias due to non-
response associated with important neighbor-
hood characteristics) in studies of health effects
related to exposure to electric and magnetic
fields. Instead of selecting an actual control
and wire coding for the case residence, the
case-specular method compares the wire code
of hypothetical residences (specular resi-
dences-specular means mirror or reflection)
located in a virtual position in which either the
position of the residence or the power line is
switched around the center of the street
(Figure 4). The specular residence matches the
neighborhood characteristics of the case house,
but it may have a different wire code. Most
important for this design, if the association
between wire codes and a health effect resulted
from wire code acting as a proxy for some
neighborhood/street factor (e.g., air pollution,
socioeconomic status), then the distribution of
wire codes should not differ between case and
specular residences. This latter point is the crit-
ical assumption for the method (52) and is
tested through the explicit assumption that the
probability of encountering a residence with an
actual wire code X and a specular wire code Y
is the same as the probability of encountering a
residence with actual wire code Y and specular
code X (61). This assumption ofsymmetry can
be assessed only through a neighborhood sur-
vey or the use of actual controls. Two other
assumptions of this approach are that resi-
dences on the same side of the street as power
lines are not systematically different (i.e., on
other risk factors) from residences on the
opposite side of the street, and that coding of
case residences and their speculars is done in
an unbiased manner. A test of the first assump-
tion was made for one study site and the
assumption was supported; however, the
authors acknowledge the need for tests in vari-
ous neighborhood configurations to determine
the ease with which this critical assumption
can be met. To avoid bias in the coding ofwire
codes, the use of a control household is desir-
able (to blind coders); in a pilot study without

Table 5. Simulation study to compare standard case-crossover and bidirectional case-crossover estimators.a
Estimator True value Meanb SD Nominal SE
14 days prior for control day 0.1000 0.0625 0.1707 0.1730
28 days prior for control day 0.1000 -0.0220 0.1708 0.1701
Random day before and after case day 0.1000 0.0993 0.1330 0.1412
All days (n = 363) prior to failure 0.1000 0.4894 0.0710 0.0856
All days before (n = 363) and 0.1000 0.0995 0.0934 0.0988
after (n= 363) failure

SD, standard deviation.
'Data from Navidi et al. (25). bMean of 1,000 replications. For each estimator, this represents the square root of the average of 1,000
replications of asymptotic variance.

blinding and explicit coding runs this did not
present a problem. Clearly more testing of
with this design and the likelihood of meeting
its critical assumptions is required before it can
be recommended as a sole source of data for
studies of health effects of electrical and
electromagnetic fields.

General comments about case-only designs.
The case-specular design has been developed
for the specific problem of measuring environ-
mental exposure. Therefore, general comments
refer largely to the case-crossover design.
Although the case-crossover design can be rec-
ommended for use in environmental and
occupational respiratory studies in those situa-
tions that conform to the original temporal
assumptions defined by Maclure (53), it must
be acknowledged that the optimal strategy (in
terms of lack of bias and maximum precision)
for sampling control time is difficult to iden-
tify, even for a given exposure-outcome
scenario (55) and extensions to exposure-
outcome scenarios outside a given study would

Table 6. Comparison of bidirectional and unidirectional
case-crossover designs. Adjusted odds ratios for the
association of daily mortality with a 100 pm/m3 incre-
ment 48-hr average total of suspended particles,
Philadelphia, PA, 1973-1980.

Without seasonal With seasonal
Control periodsa adjustmentb adjustmentc
Before and after
case period
7 days 1.105 1.104
7 and 14 days 1.050 1.048
7, 14, and 21 days 1.056 1.055

After case
period only
7 days 1.123 1.106
7 and 14 days 1.073 1.047
7, 14, and 21 days 1.072 1.041

From Neas et al. (56); estimate from Poisson regression based
on full times series = 1.069 (95% confidence interval,
1.043-1.096). 'Case period for exposure = 48-hr average TSP
ending on the day of death. bAlso adjusted for 24-hr average
temperature, dew point, winter temperature, day indicator.
cAdjustment for season with four sine and cosine functions and
with periods of 365 and 120 days.
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Figure 4. Diagram of case and specular residences in
relation to power lines on a street. The specular resi-
dence is the mirror image of the case residence with
respect to the center of the street. Distances to power
line for the two residences are shown. Data from
Zaffanella (61). Reproduced with permission of
Lippincott Williams & Wilkins.
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be hazardous. Therefore, any study that uses
the case-crossover design should include sev-
eral formulations of control exposure time to
test the robustness and precision of the
results. The work of Bateson and Schwartz
(60) and a recent analysis from Korea (62)
clearly indicate that temporal trends in expo-
sure still pose a serious challenge to the valid-
ity of effect estimates derived using the
case-crossover design. Thus, using the
case-crossover design in situations in which it
is known or suspected there are trends in
exposures over time is best reserved for the
corroboration of analyses that can more
directly account for the effects of time trends.
The case-crossover design does, however,
have an advantage over the ecologic time
series studies against which it has been evalu-
ated because it permits evaluation of
individual-level covariates, an option that
does not exist for the truly ecologic time
series studies. This option permits exploration
of issues such as susceptible subgroups, which
cannot be addressed easily in ecologic time
series studies. In addition, if some of the
problems of temporal confounding can be
overcome, the design is more efficient than a
panel study because expensive follow-up of
panels of individuals may not be necessary.

Greenland (52) has provided a compre-
hensive discussion of issues that relate broadly
to case-only designs. Several of his points are
worth noting here. In general, the matching
implicit in case-crossover designs can lead to
decreased precision of estimates, since the
close matching of these designs tends to pro-
duce exposure-concordant case-"pseudo-
control" (Greenland's term) sets which are
not used in the match analyses. Any misclassi-
fication of exposure is exaggerated in situa-
tions in which exposures are highly correlated
(63), as they will tend to be in the case-
crossover design. Moreover, misclassification
could be differential within each case-pseudo-
control set if different methods (metrics) of
exposure are used for the case risk period and
the pseudocontrol" period [see Mittelman
(55) for examples] or because past exposures
are less well-documented or recalled than cur-
rent exposures. Finally, Greenland raises a
subtle and important point that makes it dif-
ficult to compare results from case-control
and case-only designs. He notes that exposure
coefficients from case-control studies repre-
sent covariate-specific log-odds ratios that
have the interpretation of average risk divided
by average survival probability, and those
from a case-crossover design have the inter-
pretation of average subject-specific log-odds
ratios (52). These two types of log-odds will
have the same interpretion only if it can be
assumed that all individual log-odds ratios
are equal to a constant (equal susceptibilty)
(64), a very strong assumption in most cases.

A Final Comment about Case-Control
Studies
Modern understanding of the case-control
study and its relation to the cohort study has
led to a broad expansion of situations in
which one or another variant of case-control
studies can provide efficient and valid designs
for investigation of the effects of environmen-
tal and occupational exposures on respiratory
health. Some of these designs have applications
in particular situations (e.g., case-specular),
but in other situations, the strengths and pit-
falls (e.g., case-crossover, countermatching)
of the design have yet to be fully understood
before the full range of their potential appli-
cation is known. Ongoing methodologic
research should provide this guidance in the
not too distant future. Nonetheless, it should
be clear that case-control designs deserve
strong consideration as design options to
address research questions that in the past
might quickly have led to more costly and
time-consuming cohort studies.
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